
Scheduling with Global Information in Distributed

Systems

Fabrizio Petrini and Wu-chun Feng

{fabrizio, feng}@lanl.gov

Computing, Information, & Communications Division

Los Alamos National Laboratory

Los Alamos, NM 87545, USA

August 22, 1999

Abstract

One of the major problems faced by the developers of parallel programs is

the lack of a clear separation between the programming model and the operat-

ing system. In this paper, we present a new methodology to multitask parallel

jobs in a message-passing environment and to develop parallel programs that

can pave the way to the efficient implementation of a distributed operating

system. This methodology is based on three innovative techniques: commu-

nication buffering, strobing, and non-blocking, one-sided communication. By

leveraging these techniques, we can perform effective optimizations based on

the gloabl status of the parallel machine rather than on the limited knowledge

available locally to each processor.

1

The advantages of the proposed methodology include higher resource u-

tilization, reduced communication overhead, efficient implementation of flow-

control strategies and fault-tolerant protocols, accurate performance modeling,

and a simplified yet still expressive parallel programming model.

Some preliminary experimental results show that this methodology is very

effective in increasing the overall performance in the presence of load imbalance

and communication intensive workloads.

Keywords: Paralllel Job Scheduling, Distributed Operating Systems, Commu-

nication Protocols.

1 Introduction

The scheduling of parallel jobs has long been an active area of research [10, 11]. It is

a challenging problem because the performance and applicability of parallel schedul-

ing algorithms is highly dependent upon factors at different levels: the workload,

the parallel programming language, the operating system (OS), and the machine

architecture.

Time-sharing scheduling algorithms are particularly attractive because they can

provide good response time without migration or predictions on the execution time

of the parallel jobs. However, time-sharing has the drawback that communicating

processes must be scheduled simultaneously to achieve good performance. With re-

spect to performance, this is a critical problem because the software communication

overhead and the scheduling overhead to wake up a sleeping process dominate the

communication time on most parallel machines [20].

Over the years, researchers have developed parallel scheduling algorithms that can

be loosely organized into three main classes, according to the degree of coordination

between processors: explicit coscheduling, local scheduling and implicit or dynamic

2

coscheduling .

On the one end of the spectrum, explicit coscheduling [9] ensures that the schedul-

ing of communicating jobs is coordinated by constructing a static global list of the

order in which jobs should be scheduled. A simultaneous context-switch is then

required across all processors. Unfortunately, these straightforward implementa-

tions are neither scalable nor reliable. Furthermore, explicit coscheduling requires

that the schedule of communicating processes be precomputed, which complicates

the coscheduling of client-server applications and requires pessimistic assumptions

about which processes communicate with one another. Finally, explicit coscheduling

of parallel jobs interacts poorly with interactive jobs and jobs performing I/O [21].

At the other end of the spectrum is local scheduling, where each processor inde-

pendently schedules its processes. This is an attractive time-sharing option due to

its ease of construction. However, the performance of fine-grained communication

jobs can be orders of magnitude worse than with explicit coscheduling because the

scheduling is not coordinated across processors [14].

An intermediate approach initially developed at UC Berkeley and MIT in recent

years is implicit or dynamic coscheduling [1, 24, 8, 33]. With implicit coscheduling,

each local scheduler makes independent decisions that dynamically coordinate the

scheduling actions of cooperating processes across processors. These actions are

based on local events that occur naturally within communicating applications. For

example, on message arrival, a processor speculatively assumes that the sender is

active and will probably send more messages in the near future. The implicit infor-

mation available for implicit coscheduling consists of two inherent events: response

time and message arrival [1]. An in-depth performance analysis of coscheduling

strategies is reported in [23].

Response time is the time for the response to a message request to return to the

sending process. Assuming the destination process must be scheduled for a response

3

to be returned, a fast response indicates to the sending node that the corresponding

destination process is probably currently scheduled. Therefore, the desired action

for implicit coscheduling is to keep the sender scheduled. Conversely, if the response

is not received in a timely fashion, the sending node can infer that the destination

is probably not scheduled. Thus, it is not beneficial to keep the sender scheduled.

The mechanism that achieves these desired actions is two-phase spin blocking.

With two-phase spin-blocking, a process spins for some threshold amount of time,

and if the response arrives before the time expires, it continues executing. If the

response is not received within the threshold, the process voluntarily relinquishes

the processor so a competing process can be scheduled.

The other inherent event used in implicit coscheduling is message arrival, the

receipt of a message from a remote node. When a message arrives, the implication

is that the corresponding remote process was recently scheduled. Therefore, it may

be beneficial to schedule, or keep scheduled, the receiving process and to increase its

spin time.

The main drawbacks of dynamic and implicit coscheduling include (1) the lim-

ited programming model supported, (2) the limitation of a localized flow-control

strategy, (3) the non-trivial implementation of fault tolerance, and (4) the lack of a

reliable performance model of the execution time of parallel jobs, due to the dynamic

interleaving of several jobs. We elaborate on a few of these drawbacks below.

In the presence of fine-grained communication, implicit coscheduling increases

the spinning threshold. As a consequence, many processes speculatively spin wait-

ing for message arrival, potentially wasting CPU time with jobs having irregular

communication patterns. In addition, implicit coscheduling incurs communication

overhead on a per-message basis.

The programming model used in the implementation of implicit coscheduling

does not support a full-fledged communication library as MPI and considers only

4

three basic communication operations: reads and writes, request-response messages

between pairs of processes requiring the requesting process to wait for the response,

and barriers to synchronize all processes.

The limitation of using a localized flow-control strategy emerges when processes

perform continuous reads or writes in an irregular communication pattern. In this

case, they can flood the output buffers with write operations [1].

Some of these limitations are successfully addressed in [23], with a technique

called Periodic Boost. Rather than sending an interrupt for each incoming message,

the kernel periodically examines the status of the network interface, thus reducing

the overhead with high communication workloads. Also, the experiments reported

in [23] consider a complete implementation of MPI. Our methodology is based on a

similar buffering technique, which is integrated with the notion of a global time-slice,

and the strobing algorithm.

In this paper we present a new methodology that tries to conjugate the positive

aspects of explicit and implicit coscheduling using three innovative techniques: com-

munication buffering to amortize communication overhead (a technique very close

to Periodic Boost); strobing to globally exchange information at regular intervals;

and non-blocking, one-sided communication to decouple communication and syn-

chronization. By leveraging these techniques, we can perform effective optimizations

based on the status of the parallel machine rather than on the limited knowledge

available locally to each processor.

The benefits of the proposed methodology include higher resource utilization, a

dramatic simplification of the run time support, reduced communication overhead,

efficient global implementation of flow-control strategies and fault-tolerant proto-

cols, accurate performance modeling, and a simplified yet still expressive parallel

programming model (a la CISC→RISC instruction-set simplification).

The rest of the paper is organized as follows. Section 2 characterizes important

5

properties which are shared by many parallel applications, e.g., resource utilization

and communication access patterns, and which inspired our proposed methodology.

The methodology itself is described in Section 3 and some preliminary results are

presented in Section 4. Finally, we present our conclusions in Section 5.

2 Resource Utilization of Parallel Programs

0

10

20

30

40

50

60

70

80

90

0 10000 20000 30000 40000 50000 60000 70000

A
ct

iv
e

pr
oc

es
so

rs

Time (cycles)

Active processors

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10000 20000 30000 40000 50000 60000 70000

N
et

w
or

k
U

til
iz

at
io

n

Time (cycles)

Network utilization

a) b)

Figure 1: Resource Utilization in a Transpose FFT Algorithm.

In Figure 1, we show the global processor and network utilization (i.e., the num-

ber of active processors and the fraction of active links) during the execution of a

transpose FFT algorithm on a parallel machine with 256 processors. These proces-

sors are connected with an indirect interconnection network using state-of-the-art

routers [30]. Based on these figures, there is obviously an uneven and inefficient

use of system resources. During the two computational phases of the transpose, the

network is idle. Conversely, when the network is actively transmitting messages,

the processors are not doing any useful work. These characteristics are shared by

many SPMD programs, including Accelerated Strategic Computing Initiative (AS-

CI) application codes such as Sweep3D [16]. Hence, there is tremendous potential

for increasing resource utilization in a parallel machine.

6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.06 0.065 0.07 0.075 0.08

N
et

w
or

k
U

til
iz

at
io

n

Time (secs)

Parallel matrix multiplication

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.06 0.061 0.062 0.063 0.064 0.065

N
et

w
or

k
U

til
iz

at
io

n

Time (secs)

LU decomposition

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.06 0.061 0.062 0.063 0.064 0.065

N
et

w
or

k
U

til
iz

at
io

n

Time (secs)

Cholesky decomposition

0

0.1

0.2

0.3

0.4

0.5

0.6

0.06 0.062 0.064 0.066 0.068 0.07

N
et

w
or

k
U

til
iz

at
io

n

Time (secs)

Multiple Sequence Alignment

c)

a) b)

d)

Figure 2: Network Utilization in Scientific Parallel Programs.

Another important characteristic shared by many parallel programs is their access

pattern to the network. The vast majority of parallel applications display bursty

communication patterns with alternating spikes of impulsive communication with

periods of inactivity.

In Figure 2, we show the network utilization by running four distinct applications

over a parallel machine with 256 processors [26]. In all four cases, we can identify

communication holes, i.e., periods of network inactivity, in the network. Therefore,

there exists a significant amount of communication bandwidth which can be made

available for other purposes.

7

3 Multitasking Parallel Jobs

In order to improve the resource utilization of parallel programs, we propose to mul-

titask parallel jobs. That is, instead of overlapping computation with communication

and I/O within a single parallel program, all the communication and I/O which

arises from a set of parallel programs can be overlapped with the computations in

those programs.

We propose three techniques to implement the multitasking of parallel jobs.

1. The communication generated by each processor is buffered and performed at

the end of regular intervals (or time-slices) in order to amortize the communi-

cation and scheduling overhead. By delaying the communication, we allow for

the global scheduling of the communication pattern.

2. A strobing mechanism performs a total exchange of information at the end of

each time-slice so that multiprocessor machines may move away from isolated

scheduling algorithms [1, 24, 8, 33] (where processors make decisions based

solely on their local status and a limited view of the remote status) to more

outward-looking or global scheduling algorithms.

3. Finally, we propose to use non-blocking and one-sided communication primi-

tives to decouple communication and synchronization in order to schedule the

communication pattern with additional degrees of freedom.

This approach represents a significant improvement over existing work reported

in the literature. It allows for the implementation of a global scheduling policy, as

done in explicit coscheduling, while maintaining the overlapping of computation and

communication provided by implicit coscheduling.

8

3.1 Communication Buffering

Rather than incurring communication and scheduling overhead on a per-message

basis, we propose to accumulate the communication messages generated by each

processor and amortize the overhead over a set of messages. Specifically, the cost of

the system calls necessary to access the kernel data structures for communication is

amortized over a set of system calls rather than being incurred on each individual

system call. This implies that our methodology can be tolerant to the potentially

high latencies that can be introduced in a kernel call or in the initialization of the

NIC that can reside on a slow I/O bus. In addition to amortizing communica-

tion and scheduling overhead, we can also implement zero-copy (or low-copy, if we

desire fault-tolerant communication) communication. As a result, our approach to

communication buffering can achieve performance comparable to user-level network

interfaces (i.e., OS-bypass protocols) [5, 22, 2, 17, 18] without using specialized HW.

3.2 Strobing

The uneven resource utilization and the periodic, bursty communication patterns

generated by many parallel applications can be exploited to perform a total exchange

of information and synchronizing the processors at regular intervals with little ad-

ditional cost. This provides the parallel machine with the capability of filling in

communication holes generated by parallel applications.

In order to provide the above capability, we propose a strobing mechanism to

support the scheduling of a set of parallel jobs which share a parallel machine. Let us

assume that each parallel job runs on the entire set of p processors, i.e., jobs are time-

sharing the whole machine. The strobing mechanism performs an optimized total-

exchange of control information and also triggers the downloading of any buffered

packets into the network. The strobe can be implemented by designating one of

9

the processors as the master, the one who generates the “heartbeat” of the strobe.

The generation of heartbeats will be achieved by using a timeout mechanism which

can be associated with the network interface card (NIC). This ensures that strobing

incurs very little CPU overhead as most NICs can count down and send packets

asynchronously. This is true for a wide range of NICs, ranging from simple 100-Mbit

Ethernet cards to more sophisticated devices such as the Myrinet cards [3].

On reception of the heartbeat, each processor (excluding the master), is inter-

rupted and downloads a broadcast heartbeat into network. After downloading the

heartbeat, the processor continues running the currently active job. (This ensures

computation is overlapped with communication.) When p heartbeats arrive at a

processor, the processor will enter a strobing phase where its kernel will download

any buffered packets. Each heartbeat contains information on which processes have

packets ready for download and which processes are asleep waiting to upload a packet

from a particular processor.

t 0

δ

� � � � � �� � � � � �
� � � � � �� �� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �

� � � � � �� � � � � �
� � � � � �� � � � � �

BARRIER

K K

t t t1 2 3

BARRIER

TIME

Computation

Communication

K

K = kernel

Figure 3: Scheduling Computation and Communication. The communication ac-

cumulated before t0 is downloaded into the network between t1 and t2 (after the

completion of the barrier synchronization).

Figure 3 outlines how computation and communication can be scheduled over

10

a generic processor. At the beginning of the heartbeat, t0, the control is given to

the kernel, which downloads the control packets for the total exchange. During

the execution of the barrier synchronization, the user process regains control of the

processor, and at the end of it, the kernel schedules the pending communication

accumulated before t0 to be delivered in the next time-slice. At t1, the processor

will know the number of incoming packets that it is going to receive in the next

communication time-slice as well as the sources of the packets and will start the

downloading of outgoing packets.

This strategy can be easily extended to deal with space-sharing where different

regions run different sets of programs [9, 34, 19]. In this case too, all these regions

are synchronized by the same heartbeat.

The total-exchange can be properly optimized by exploiting the low-level features

of the interconnection network. For example, if control packets are given higher

priority than the standard background traffic at the sending and receiving endpoints,

they can be delivered with predictable latency.

In Figure 4 we analyze the network latency1 distribution of the control packets

during the execution of a direct total-exchange algorithm2 [27]. In this simulation,

we consider a network with 256 processing nodes equipped with wormhole routers

similar to those of the SGI Origin 2000 [7, 6, 12], and we assume the existence

of a background random traffic that occupies 80% of the network capacity. If the

control packets are prioritized at the network endpoints they can be delivered with

a bounded latency, below 30 µsec.

We also analyzed the execution time of the direct total-exchange algorithm in a

family of indirect networks with up to 1024 processing nodes. In this experiment,

1The network latency is the time spent in the network without including source and destination

queueing delays.
2In a direct total-exchange algorithm each packet is sent directly from source to destination,

without intermediate buffering.

11

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30

P
ac

ke
ts

Network latency (µsec)

Network latency distribution of the control packets

Figure 4: Network latency distribution of the control packets in a network with 256

processing nodes.

8

16

32

64

128

256

512

1024

2048

4 8 16 32 64 128 256 512 1024

E
xe

cu
tio

n
tim

e
(µ

se
c)

Network size

Barrier synchronization execution time

0.2
0.4
0.6
0.8

Figure 5: Execution time of the total exchange algorithm in a family of interconnec-

tion networks with up to 1024 processing nodes.

12

whose results are shown in Figure 5, we assume the existence of background traffic

that varies from 20% to 80% of the network capacity. We can see that the execu-

tion time is largely insensitive to the intensity of the background traffic. With 64

processing nodes (the configuration of a single SGI Origin 2000 cluster) the execu-

tion time is only 50 µsec and this increases to 150 µsec with 256 nodes. Due to

the quadratic increase of the number of messages sent during the total-exchange,

the execution time reaches 1 msec with 1024 nodes, limiting the scalability of the

approach. This problem can be addressed in a clustered architecture, like ASCI Blue

Mountain, by using a multi-phase, indirect algorithm, that in the first phase exe-

cutes the total-exchange inside each single cluster, then performs a total-exchange

between clusters, to conclude with a final phase internal to the clusters, giving a

barrier synchronization time of less than 300 µsec.

The global knowledge of the communication pattern provided by the total ex-

change allows for the implementation of efficient flow-control strategies. For example,

it is possible to avoid congestion inside the network by carefully scheduling the com-

munication pattern and limiting the negative effects of hot spots by damping the

maximum amount of information addressed to each processor during a time-slice.

The same information can be used at the kernel level to provide fault-tolerant com-

munication. For example, the knowledge of the number of incoming packets greatly

simplifies the implementation of receiver-initiated recovery protocols.

3.3 Blocking vs. Non-Blocking

One of the most limiting constraints in the implementation of time-sharing algo-

rithms is the need to schedule simultaneously communicating processes. This prob-

lem is exacerbated with blocking communication, which imposes an explicit hand-

shake between sender and receiver.

We argue that this problem can eliminated, or at least alleviated, by slightly

13

modifying the communication structure of parallel jobs and replacing blocking com-

munication with non-blocking primitives and/or one-sided communication.

FENCE

FENCE

put

putputput

put

b)a)

send

send

receive

receive

receive

send

CBA CBA

Figure 6: (a) Message Passing. (b) One-Sided Communication.

Let us consider the following example. The dynamics of a message-passing pro-

gram can be represented as a two-dimensional graph with processes on the horizontal

axis and time on the vertical one, as shown in Figure 6. Arrows between processes

represent communication between a sender and a receiver. In Figure 6(a), three

processes exchange messages. For the sake of convenience, let us assume that there

is no dependency between the messages (i.e., they can be sent in any order). Using

a traditional, blocking, message-passing programming style, we must define a com-

munication schedule even if one is not required, e.g., A sends to B, B receives from

A and sends to C, C receives from B and sends to A.

With one-sided communication (or non-blocking communication primitives, in

general), the actual message transmission and the synchronization are decoupled,

leaving many degrees of freedom to re-arrange message transmission. In Figure 6(b),

the same communication pattern is delimited by two barriers which include the com-

14

munication executed with put primitives. The communication can be executed in any

order, provided that the information is delivered at the end of the synchronization

calls. Also, communicating processes do not need to be simultaneously scheduled to

perform the communication.

3.4 Bulk-Synchronous Parallel Programs

Using our proposed strobing and buffering mechanisms, any generic parallel program

can be transformed into a Bulk-Synchronous Parallel (BSP) one [32]. Although the

buffering and strobing mechanisms alone improve parallel program performance,

transforming by themselves a parallel program into a BSP one not only can improve

performance further but also allows for accurate prediction of the execution times.

A BSP computation consists of a sequence of parallel supersteps. During a

superstep, each processor can perform a number of computation steps on values held

locally at the beginning of the superstep and can issue various remote read and write

requests that are buffered and delivered at the end of the superstep. This implies that

communication is clearly separated from synchronization, i.e. it can be performed in

any order, provided that the information is delivered at the beginning of the following

superstep. However, while the supersteps in the original BSP model can be variable

in length, our programming model generates computation and communication slots

which are fixed in length and are determined by the time-slice.

One important benefit of the BSP model is the ability to accurately predict the

execution time requirements of parallel algorithms and programs. This is achieved by

constructing analytical formulae that are parameterized by a few constants which

capture the computation, communication, and synchronization performance of a

p-processor system. These results are based on the experimental evidence that the

generic collective communication pattern generated by a superstep called h-relation 3

3
h denotes the maximum amount of information sent or received by any process during the

15

can be routed with predictable time [13, 28]. This implies that the maximum amount

of information sent or received by each processor during a communication time-slice

can be statically determined and enforced at run time by a global communication

scheduling algorithm. For example, if the duration of the time-slice is δ and the

permeability of the network (i.e., the inverse of the aggregate network bandwidth)

is g, the upper bound hmax of information, expressed in bytes, that can be sent or

received by a single processor is

hmax =
T

g
.

Furthermore, by globally scheduling a communication pattern, as described in Sec-

tion 3.2, we can derive an accurate estimate of the communication time with simple

analytical models already developed for the BSP model [28, 4, 27].

Another important benefit of the BSP model is higher resource utilization over

the parallel machine, irrespective of the computational and communication patterns.

For example, a sparse communication pattern (where a single processor receives

hmax bytes) or a more dense communication pattern (where more processors share

the same upper bound) can be routed in the same communication time-slice. This

means that it is possible to use spare communication bandwidth to deliver packets

generated by other parallel jobs, without detrimental effects. More generally, as with

any multiprogrammed system, multitasking a collection of bad (parallel) programs,

i.e., unbalanced computation or communication, may produce the same behavior as

a single well-behaved (parallel) program. Multitasking can provide opportunities for

filling in “spare communication cycles” by merging sparse communication patterns

together to produce a denser communication pattern.

Lastly, the BSP model is also beneficial for fault tolerance4 Fault tolerance can

superstep.
4This is of vital importance to the large ASCI supercomputers where the MTBF can be on the

order of hours.

16

be enhanced by exploiting the synchronization points at the end of a time-slice: we

can take a snapshot of the whole machine and checkpoint its status.

4 Experimental Results

Our preliminary experimental results include a working implementation of a repre-

sentative subset of MPI-2 on a detailed (register-level) simulation model [29]. The

simulation environment includes a standard version of MPI-2 and a multitasking

one, that implements the main features of our proposed methodology.

Because the design space of our problem is too large to explore exhaustively, we

fix the workload and system characteristics.

4.1 Characteristics of the Synthetic Workloads

The workloads used consist of a collection of single-program multiple-data (SPMD)

parallel jobs, as reported in [8], that alternate phases of purely local computation

with phases of interprocess communication. A parallel job generated by one of such

programs consists of a group of P processes and each process is mapped on a pro-

cessor throughout the execution. Processes compute locally for a time uniformly

selected in the interval (g − v

2
, g + v

2
). By adjusting g we model parallel programs

with different computational granularities and by varying v we change the degree of

load-imbalance across processors. The communication phase consists of an opening

barrier, followed by an optional sequence of pairwise communication events separat-

ed by small amounts of local computation, c, and finally an optional closing barrier.

We consider two communication patterns: Barrier and Transpose. Barrier consist-

s of only the opening barrier and thus contains no additional dependencies. This

workload can can be used to analyze how our methodology responds to load im-

balance. Transpose is a communication intensive workload. It tries to emulate the

17

communication pattern generated by the FFT transpose algorithm [15], where each

process accesses data on all other processes.

We consider three parallel jobs with the same computation granularity, load-

imbalance and communication pattern arriving at the same time in the system.

We fix the communication granularity, c, at 8 µsec. The number of communica-

tion/computation iterations is scaled so that each job runs for approximately 1 sec

in a dedicated environment. The system consists of 32 processors and each job

requires 32 processes (i.e. jobs are only time-shared).

4.2 The Simulation Model

The simulation tool that we used in the experimental evaluation is called SMART

(Simulator of Massive ARchitectures and Topologies) [25], a flexible tool designed

to model the fundamental characteristics of a massively parallel architecture.

The current version of SMART is based on the x86 instruction set. The ar-

chitectural design of the processing nodes is inspired by the Pentium II family of

processors [31]. In particular, it models a two level cache hierarchy with a write

back L1 policy and non blocking caches. We assume a processor speed of 500 Mhz.

In the experiments we will consider a network with 32 processors interconnected in

a 5-dimensional cube topology with performance characteristics similar to those of

Myrinet routing and network cards [3]. This network features a one-way data rate

of about 1 Gbit/sec and a base network latency of few µsec. The simulator models

at register level the congestion inside the network, at the network interface and the

routing and flow control protocols.

The run time support running on this simulated platform includes a standard ver-

sion of a significative subset of MPI-2 and a multitasking version of the same subset

that performs the strobing algorithm at the end of each time-slice, as outlined in sec-

tion 3. It is worth noting that the multitasking MPI-II version is much simpler than

18

closing barrier (optional)

local
computation

begin opening barrier

end opening barrier

communication (optional)

computation
granularity (g)

load
variation (v)

time processes

communication
gap (c)

Figure 7: Each process of a parallel job executes on a separate processor and al-

ternates between computation and communication phases. Processes compute for a

mean time g before executing the opening barrier of the communication phase. The

variation in computation across processes is uniformly distributed in (0, v). Within

the communication phase, each process computes for a small time c between events

and the phase may close with a barrier.

19

the sequential one, because the buffering of the communication primitives greatly

simplifies the run-time support.

4.3 Sensitivity Analysis

Figures 8 and 9 illustrate the communication and computation characteristics of

our synthetic benchmarks as a function of the communication pattern, granularity,

load-imbalance, time-slice duration and context switch penalty. Each bar shows the

percentage of time spent in one of the following states, averaged over all processors:

computing, context-switching and idling.

For each communication pattern, we analyze the Cartesian product of nine alter-

natives generated by considering time-slices of 500 µsec, 1 and 2 msec with a context

switch penalty of 50, 100 and 200 µsec.

For each of these alternatives, we considers six groups of three bars. Each group

has the same computation granularity, and the load imbalance is increased as a

function of the granularity itself. We consider three cases: v = 0 (i.e. no variance),

v = g (in this case the variance is equal to the computational granularity) and v = 2g

(high degree of imbalance).

At the bottom of each figure we also report the breakdown for the same commu-

nication pattern when the workload is run in dedicated mode on the standard MPI-II

run time support (i.e. a single job is run until completion without multitasking).

A black square under a bar highlights the configurations where the multitasking

approach gets better resource utilization than the standard approach.

By examining the breakdowns of each bar, we can see several important features.

As the load imbalance of the program increases (i.e., moving to the right within each

group of three bars with the same computational granularity) the idle time increases.

For each group of 18 bars with the same time-slice and context switch penalty we

reduce the computational grain size, going from left to right, from 50 msec to 100

20

µsec.

The time-slice length is critical parameter for the overall performance. A short

time-slice can achieve a very good load balancing even in the presence of highly

unbalanced jobs. The downside is that it amplifies the context switch latency. On

the other hand, a long time-slice can virtually hide all the context switch laten-

cy, but cannot reduce the load imbalance, in particular when we have fine-grained

computations.

In Figure 8 g) we can see that a relatively small time-slice coupled with a small

context switch latency can get a high processor utilization, which is better than

the one of the single job running in a dedicated environment (or, equivalently, the

performance of zero-latency coscheduling) in eleven cases out of eighteen. Running

a single job provides a slightly better (less than 10%) performance with perfect

load balancing (v = 0) because we have to pay the context switch penalty without

improving the load balance. On the other hand, in the presence of load imbalance,

job multitasking can smooth the differences in load.

As a rule of thumb, multitasking gives good performance as long as the average

computational grain size is larger than the time-slice and the time-slice, on its turn,

is sufficiently larger than the context switch penalty.

Looking at Figure 8 and 9 we can also identify an important invariance. When the

average computational grain size is larger than the time-slice, the processor utilization

is mainly influenced by the degree of imbalance.

The experimental results show that the overall performance is sensitive to context

switch latency. This implies that it is very important to minimize such latency. In

these preliminary experimental results we did not take into account the effects of

the memory hierarchy on the working sets of different jobs. As a consequence, the

multitasking methodology requires a larger main memory, in order to avoid memory

swapping. We consider this as the main limitation of our approach.

21

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 50 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 50 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 50 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Barrier

Switch

Compute

Idle

a)

d)

b) c)

e) f)

g) h) i)

l)

Figure 8: Execution characteristics as a function of computation granularity, load

imbalance, time-slice length and context switch latency for the Barrier workload.

22

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 50 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 500 us, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 200 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 100 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 1 ms, Context Switch 50 us

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Transpose

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 ms

Fr
ac

tio
n

of
 T

im
e

0 1 2

10 ms

0 1 2

5 ms

0 1 2

1 ms

0 1 2

500 us

0 1 2

100 us
Timeslice 2 ms, Context Switch 50 us

Switch

Compute

Idle

a) b) c)

d) e) f)

g) h) i)

l)

Figure 9: Execution characteristics as a function of computation granularity, load

imbalance, time-slice length and context switch latency for the Transpose workload.

23

5 Conclusion and Future Work

In this paper we have presented a new methodology to multitask parallel jobs on

a parallel computer. The methodology addresses the main limitation of explicit

coscheduling, the high latency needed to perform a global context switch. Also, it

provides a simple framework to increase the resource utilization, simplify the design

of the run time support, increase the faults tolerance and perform effective global

optimizations.

We tried to address the complexity of a huge design space using two families of

syntethic workloads. The preliminary experimental results reported in this paper

show that our methodology can provide a better resource utilization, in particular

in the presence of load imbalance and communication intensive jobs.

We plan to extend these preliminary results by considering the effects of the

memory hierarchy by considering real application rather than synthetic workloads

and to implement in a Linux cluster a multitasking version of MPI-II.

References

[1] Andrea C. Arpaci-Dusseau, David Culler, and Alan M. Mainwaring. Scheduling with Implicit

Information in Distributed Systems. In Proceedings of the 1998 ACM Sigmetrics International

Conference on Measurement and Modeling of Computer Systems, Madison, WI, June 1998.

[2] Raul A. F. Bhoedjang, Tim Rühl, and Henri E. Bal. User-Level Network Interface Protocols.

IEEE Computer, 31(11):53–60, November 1998.

[3] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawick, Charles L. Seitz,

Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local Area Network.

IEEE Micro, 15(1):29–36, January 1995.

[4] Douglas C. Burger and David A. Wood. Accuracy vs. Performance in Parallel Simulation of

Interconnection Networks. In Proceedings of the 9th International Parallel Processing Sympo-

sium, IPPS’95, Santa Barbara, CA, April 1995.

24

[5] Compaq, Intel, and Microsoft. The Virtual Interface Architecture (VIA) Specification. avail-

able at http://www.viarch.org.

[6] William J. Dally. Virtual Channel Flow Control. IEEE Transactions on Parallel and Dis-

tributed Systems, 3(2):194–205, March 1992.

[7] William J. Dally and Charles L. Seitz. Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks. IEEE Transactions on Computers, C-36(5):547–553, May 1987.

[8] Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. Effective Distributed Scheduling

of Parallel Workloads. In Proceedings of the 1996 ACM Sigmetrics International Conference

on Measurement and Modeling of Computer Systems, Philadelphia, PA, May 1996.

[9] Dror G. Feitelson and Morris A. Jette. Improved Utilization and Responsiveness with Gang

Scheduling. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Parallel

Processing, volume 1291 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

[10] Dror G. Feitelson and Larry Rudolph. Parallel job scheduling: issues and approaches. In D. G.

Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Parallel Processing, volume

949 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[11] Dror G. Feitelson and Larry Rudolph. Toward Convergence in Job Schedulers for Parallel

Supercomputers. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling Strategies for

Parallel Processing, volume 1162 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[12] Mike Galles. Spider: A High-Speed Network Interconnect. IEEE Micro, 17(1):34–39, January

1997.

[13] Alex Gerbessiotis and Fabrizio Petrini. Network Performance Assessment under the BSP Mod-

el. In International Workshop on Constructive Methods for Parallel Programming, CMPP’98,

Marstrand, Sweden, June 1998.

[14] A. Gupta, A. Tucker, and S. Urushibara. The Impact of Operating System Scheduling Policies

and Synchronization Methods on the Performance of Parallel Applications. In Proceedings of

the 1991 ACM SIGMETRICS Conference, pages 120–132, May 1991.

[15] Anshul Gupta and Vipin Kumar. The Scalability of FFT on Parallel Computers. IEEE

Transactions on Parallel and Distributed Systems, 4(8):922–932, August 1993.

25

[16] Adolfy Hoisie, Olaf Lubeck, and Harvey Wasserman. Scalability Analysis of Multidimensional

Wavefront Algorithms on Large-Scale SMP Clusters. In The Ninth Symposium on the Frontiers

of Massively Parallel Computation (Frontiers’99), Annapolis, MD, February 1999.

[17] Atsushi Hori, Hiroshi Tezuka, and Yukata Ishikawa. Overhead Analysis of Preemptive Gang

Scheduling. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Parallel

Processing, volume 1459 of Lecture Notes in Computer Science, pages 217–230. Springer-

Verlag, 1998.

[18] Atsushi Hori, Hiroshi Tezuka, and Yutaka Ishikawa. Highly Efficient Gang Scheduling Imple-

mentation. In Supercomputing 98, Orlando, FL, November 1998.

[19] Morris A. Jette. Performance Characteristics of Gang Scheduling in Multiprogrammed Envi-

ronments. In Supercomputing 97, San Jose, CA, November 1997.

[20] Vijay Karamcheti and Andrew A. Chien. Do Faster Routers Imply Faster Communication?

In First International Workshop, PCRCW’94, volume 853 of LNCS, pages 1–15, Seattle,

Washington, USA, May 1994.

[21] Walter Lee, Matthew Frank, Victor Lee, Kenneth Mackenzie, and Larry Rudolph. Implica-

tions of I/O for Gang Scheduled Workloads. In D. G. Feitelson and L. Rudolph, editors,

Job Scheduling Strategies for Parallel Processing, volume 1291 of Lecture Notes in Computer

Science. Springer-Verlag, 1997.

[22] Scott Mace. Commodity clusters. Byte, 23(4):87–90, April 1998.

[23] Shailabh Nagar, Ajit Banerjee, Anand Sivasubramaniam, and Chita R. Das. A Closer Look

At Coscheduling Approaches for a Network of Workstations. In Eleventh ACM Symposium on

Parallel Algorithms and Architectures, SPAA’99, Saint-Malo, France, June 1999.

[24] William E. Weihl Patrick Sobalvarro, Scott Pakin and Andrew A. Chien. Dynamic Coschedul-

ing on Workstation Clusters. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling S-

trategies for Parallel Processing, volume 1459 of Lecture Notes in Computer Science, pages

231–256. Springer-Verlag, 1998.

[25] F. Petrini and M. Vanneschi. SMART: A Simulator of Massive ARchitectures and Topologies.

In Proceedings of the International Conference on Parallel and Distributed Systems Euro-

PDS’97, June 1997.

26

[26] Fabrizio Petrini. Network Performance with Distributed Memory Scientific Applications. Sub-

mitted to the Journal of Parallel and Distributed Computing, September 1998.

[27] Fabrizio Petrini. Total-Exchange on Wormhole k-ary n-cubes with Adaptive Routing. In

Proceedings of the 12th International Parallel Processing Symposium, IPPS’98, Orlando, FL,

March 1998.

[28] Fabrizio Petrini and Marco Vanneschi. Efficient Personalized Communication on Wormhole

Networks. In The 1997 International Conference on Parallel Architectures and Compilation

Techniques, PACT’97, San Francisco, CA, November 1997.

[29] Fabrizio Petrini and Marco Vanneschi. SMART: a Simulator of Massive ARchitectures and

Topologies. In International Conference on Parallel and Distributed Systems Euro-PDS’97,

Barcelona, Spain, June 1997.

[30] Fabrizio Petrini and Marco Vanneschi. Latency and Bandwidth Requirements of Massive-

ly Parallel Programs: FFT as a Case Study. Future Generation Computer Systems, 1999.

Accepted for publication.

[31] Tom Shanley. Pentium Pro and Pentium II System Architecture. Addison-Wesley, March

1998.

[32] D. B. Skillicorn, Jonathan M. D. Hill, and W. F. McColl. Questions and Answers about BSP.

Journal of Scientific Programming, 1998.

[33] Patrick Sobalvarro and William E. Weihl. Demand-Based Coscheduling of Parallel Jobs on

Multiprogrammed Multiprocessors. In Proceedings of the 9th International Parallel Processing

Symposium, IPPS’95, Santa Barbara, CA, April 1995.

[34] Kuniyasu Suzaki and David Walsh. Implementing the Combination of Time Sharing and

Space Sharing on AP/Linux. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling

Strategies for Parallel Processing, volume 1459 of Lecture Notes in Computer Science, pages

83–97. Springer-Verlag, 1998.

27

